Design and Fabrication of an Angular Microactuator for Magnetic Disk Drives

نویسندگان

  • David A. Horsley
  • Michael B. Cohn
  • Angad Singh
  • Roberto Horowitz
  • Albert P. Pisano
چکیده

Angular electrostatic microactuators suitable for use in a two-stage servo system for magnetic disk drives have been fabricated from molded chemical-vapor-deposited (CVD) polysilicon using the HexSil process. A 2.6-mm-diameter device has been shown to be capable of positioning the read/write elements of a 30% picoslider over a 1m range, with a predicted bandwidth of 2 kHz. The structures are formed by depositing polysilicon via CVD into deep trenches etched into a silicon mold wafer. Upon release, the actuators are assembled onto a target wafer using a solder bond. The solder-bonding process will provide easy integration of mechanical structures with integrated circuits, allowing separate optimization of the circuit and structure fabrication processes. An advantage of HexSil is that once the mold wafer has undergone the initial plasma etching, it may be reused for subsequent polysilicon depositions, amortizing the cost of the deep-trench etching over many structural runs and thereby significantly reducing the cost of finished actuators. Furthermore, 100m-high structures may be made from a 3m deposition of polysilicon, increasing overall fabrication speed. [256]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suspension Vibration Compensation Using a Mems Microactuator in Hard Disk Drives

This paper discusses the design and fabrication of a prototype MEMS microactuator and vibration sensors, and controller design for suspension vibration compensation in disk drives. The microactuator utilizes parallel-plates actuation and comb-finger position sensing. An electrical isolation MEMS fabrication technique is utilized to increase the actuation force. An LQG method is proposed for vib...

متن کامل

Design, Fabrication, and Control of a High-aspect Ratio Microactuator for Vibration Suppression in a Hard Disk Drive

Positioning the read-write head in a hard disk drive over data bits at densities now approaching 1 terabit per square inch will novel servo configurations and controllers. This paper presents a MEMS microactuator for installation in a dual-stage servo system for a hard disk drive and controller designs that utilize the microactuator to suppress vibration of the servo arm. The microactuator uses...

متن کامل

Single Crystal Silicon MEMS Microactuator for High Density Hard Disk Drive

A single crystal silicon MEMS microactuator for high density hard disk drives is described in this paper. The microactuator is located between a slider and a suspension, and drives the slider on which a magnetic head is attached. The MEMS actuator is fabricated by improved LISA process. It has an electrically isolated 20:1 (40μm thick, 2μm width) high aspect ratio structure directly processed f...

متن کامل

Modified Pq Method for Robustness to Microactuator Saturation and Failure

Two concerns for the deployment of two stage actuators in disk drives are microactuator saturation and data recovery in the event of outright microactuator failure. Compensators designed for good performance with two intact actuators may be unstable when the microactuator saturates or stops working entirely. This paper develops a modification of the PQ Method to guarantee stable operation in th...

متن کامل

A MEMS-Based Monolithic Electrostatic Microactuator for Ultra-Low Magnetic Disk Head Fly Height Control

A novel MEMS-based electrostatic actuator design is proposed for recording head fly height control below 10 nm. Different from prior work on MEMS-based electrostatic microactuators designed for magnetic hard disk drives (HDD), the proposed microactuator is fabricated monolithically with a conventional head/slider design. The actuator is micromachined into the same side as the head element on a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998